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Abstract 

Reactive oxygen species (ROS) and nitric oxide (NO) are important mediators of tissue injury and renal ischemia (RI). The 

study was aimed to investigate the correlation of oxidative stress with RI. Blood samples were collected from 25 RI patients and 

25 normal individuals. Plasma urea, uric acid and creatinine levels were monitored as markers of renal injury. Glutathione 

oxidase, Superoxide dismutase (SOD), catalase and malondialdehyde (MDA) were used as markers of oxidant stress. NO was 

used as a biomarker of reactive nitrogen species (RNS) formation. SOD, MDA, give complete name of this first, catalase and 

NO were assessed by spectrophotometric assay while renal parameters were estimated by enzymatic kits. Significant increase in 

plasma creatinine, urea and uric acid were found showing renal injury. Significant decrease in catalase, SOD and GSH with 

compare able increases in MDA and NO were observed.  The data was evaluated statistically by using t-test according to which 

overall significant difference was observed in oxidative stress indices, reactive nitrogen species and renal indices in case group 

of renal ischemia as compared to control group as p<0.05. Negative correlation was observed in oxidative stress parameters with 

NO and renal parameters except for MDA with positive correlation. Oxidative stress and RNS generation occur in the kidney 

during ischemia. 
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Introduction 
Renal ischemia/reperfusion (I/R) injury is a 

syndrome that develops following a sudden 

transient drop in blood flow to the kidney [1]. 

Renal I/R injury are a relatively common cause of 

acute renal failure (ARF) [2]. The pathogenesis of 

renal I/R injury involves the release of 

proinflammatory cytokines such as tumour necrosis 

factor, transforming growth factor, nuclear factor 

and reactive oxygen species [3].  Nitric oxide (NO) 

plays an important role in mediating cell damage 

during I/R injury [4]. Acute renal failure (ARF) or 

acute kidney injury (AKI), as it is now referred to 

in the literature, is defined as an abrupt or rapid 

decline in renal filtration function. This condition is 

usually marked by a rise in serum creatinine 

concentration or by azotemia (a rise in blood urea 

nitrogen [BUN] concentration) [5]. Ischemia is a 

feature of organ transplantation. In mammalian 

kidneys, ischemia results in a wide range of 

physiologic changes, including the generation of 

reactive species in a process known as oxidative 

stress [6, 7]. The reactive species important in this 

setting appear to include oxygen free radicals, such 

as superoxide, hydroxyl and reactive oxygen 

species, of hydrogen peroxide [7, 8]. These 

molecules can induce complex cascades of 

pathologic changes involving cellular lipids, 

proteins, nucleic acids, and other molecules [9, 10]. 

Collectively, these events are known as oxidative 

stress [10]. 

Superoxide dismutase (SOD) and catalase are the 

most important enzymatic antioxidant systems in 

the body. SOD, as the first and most important line 

of defense against reactive oxygen metabolites 

(ROM), transforms superoxide ion to H2O2 which 

is a less reactive molecule [11]. The ability of 

superoxide dismutase (SOD), allopurinol, 

deferoxamine and other antioxidants to attenuate 

renal I-R injury suggests that reactive oxygen 

species contribute to the development of renal 

injury [12-14]. However, these compounds also 

scavenge or inhibit the formation of peroxynitrite 

(ONOO–), a highly reactive species derived from 

nitric oxide (NO) and superoxide [15, 16, 17, 18]. 

Indeed, several lines of evidence now implicate 

reactive nitrogen species (RNS) as contributors to 

renal I-R injury [19-22]. There are a number of 

RNS derived from NO [23]. Of these, peroxynitrite 

(ONOO–) is the best characterized and appears 

having the most biological activity [24]. Although 

NO, generated from L-arginine by nitric oxide 

synthase (NOS), participates in numerous 

physiological processes in kidney [25], NO also 

appears to contribute to renal I-R injury [20-22]. 

Oxidative stress in organisms leads to the 

peroxidation of all major biomolecules, such as 

DNA, proteins and lipids. The most widely used 

method to find oxidative stress is to determine lipid 

mailto:kalsimbb@yahoo.com


42 

 

peroxidation with the thiobarbituric acid reactive 

substances (TBARS) method. Among these targets, 

the peroxidation of lipids is basically damaging 

because the formation of lipid peroxidation product 

leads to spread of free radical reactions. The 

general process of lipid peroxidation consists of 

three stages: initiation, propagation and termination 

[26]. Owing to the correlation and effect of 

oxidative stress with renal ischemia the present 

study was carried out to determine the relationship 

of generation of reactive oxygen species and 

nitrogen reactive species in oxidative stress with the 

occurrence of renal ischemia.  

 

Materials and Method 
In this study, a total of 50 samples were collected 

from 25 patients with renal ischemia and 25 control 

subjects. Patients with renal ischemia were chosen 

from the outpatient clinic of kidney in Mayo 

Hospital. Blood taken was subjected to 

centrifugation in order to separate serum within one 

hour after collection of blood. The sample was 

processed and analyzed for the estimation of renal 

parameters (urea, creatinine and uric acid), lipid 

peroxidation (LPO), antioxidant enzymes activity 

(SOD, Catalase and Glutathione) and nitric oxide 

(NO). Renal parameters (urea, creatinine and uric 

acid) were measured by the enzymatic kit method. 

GSH count was assessed by the method of Tietze 

[27]. Catalase activity was measured by the method 

of Aebi [28]. Superoxide dismutase (SOD) activity 

was determined by the method of Kakkar [29]. 

Malondialdehyde (MDA) in tissue was estimated 

by the method of Ohkawa [30]. Nitrite 

concentration (NO) was typically measured by a 

well-known method of colorimetric Griess assay 

[31]. Measurements were made 

spectrophotometrically. Oxidative stress parameters 

(catalase, SOD, GSH, MDA and NO) and renal 

parameters (urea, creatinine and uric acid) in the 

control group were compared with the same 

parameters of blood samples of renal ischemic 

patients. In statistical analysis, SPSS test was used 

(Independent T-test).  

 

Results and Discussion 
In this study effects of ischemia on renal catalase 

and SOD activities as well as renal GSH, MDA and 

NO levels were evaluated. Data showed that in 

spite of a decrease in renal GSH, SOD and catalase 

activity in ischemic condition, MDA activity was 

increased. NO levels in renal ischemic patients 

group were significantly higher than that of control 

group. According to descriptive statistics, the mean 

values of catalase in control and renal ischemic 

patients were 164.30±10.86 and 151.47±0.58 

respectively. The observed mean value of SOD in 

control was 9.55±2.21 while in renal ischemic 

patients it was 4.35±1.73. The mean value of MDA 

in control and renal ischemic patients were 

3.68±1.22 and 5.97±1.73 respectively. In control, 

the mean value of GSH was 9.96±2.47 while the 

observed mean value in renal ischemic patients was 

3.44±1.16. NO in control was observed as 

28.72±3.92 while in renal ischemic patients, the 

observed mean value of NO was 47.78±9.66 (Table 

1).  

Significant increase in both BUN and creatinine 

showed that ischemia resulted in serious renal 

injury. According to descriptive statistics, the mean 

values of urea in control and renal ischemic patients 

were 32.75±4.84 and 175.75±60.60 respectively.  

Acute renal failure (ARF) is characterized by the 

abrupt failure of the kidneys to regulate water and 

electrolyte homeostasis leading to high levels of 

urea and BUN in individuals with renal failure. The 

maximum level of urea could be more than 300 IU 

[9]. 

Table 1: Mean ± SD values of oxidative stress parameters 

Groups 
Parameters analysed 

Catalase SOD MDA GSH NO 
Control 164.3±10.9 9.5±2.2 3.6±1.2 9.96±2.5 28.7±3.9 

RIP 151.4±0.6 4.3±1.7 5.97±1.7 3.4±1.2 47.8±9.7 

 

The observed mean value of creatinine in control 

group was 0.91±0.18 while in renal ischemic 

patients it was 7.33±2.65. Uric acid in control was 

observed as 5.08±0.74 while in renal ischemic 

patients, the observed mean value of uric acid was 

33.46±11.06 (Table 2).  

 
Table 2: Mean ± SD values of renal parameters 

 

 

Correlation showed significant difference (p<0.05) 

in all the parameters (catalase, SOD, MDA and 

GSH) of oxidative stress as compared to reactive 

nitrogen species (NO) and renal parameters and as 

compared to each other. Oxidative stress 

parameters (SOD, GSH and catalase) showed 

negative correlation with MDA, NO and renal 

parameters (urea, creatinine and uric acid) as SOD, 

GSH and catalase decreases while other increases. 

NO showed positive correlation with lipid 

peroxidation，  MDA and renal parameters (urea, 

creatinine and uric acid) all these increase in renal 

ischemic patients. However, all the parameters were 
highly correlated (Table 3). 

Groups 
Parameters analysed 

Urea Creatinine Uric acid 

Control 32.75±4.84 0.91±0.18 5.08±0.74 

RIP 175.75±60.6 7.33±2.65 33.46±11.06 

RIP = Renal Ischemic Patients 

RIP = Renal Ischemic Patients 
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Table 3: Correlation of oxidative stress and renal parameters 

  Catalase GSH Creatinine MDA NO SOD Urea Uric Acid 

CATALASE Pearson Correlation 1 0.509** -0.583** -0.558** -0.604** 0.382* -0.574** -0.581** 

Sig. (2-tailed)  0.001 0.000 0.000 0.000 0.015 0.000 0.000 

N 40 40 40 40 40 40 40 40 

GSH Pearson Correlation 0.509** 1 -0.724** -0.433** -0.612** 0.693** -0.725** -0.771** 

Sig. (2-tailed) 0.001  0.000 0.005 0.000 0.000 0.000 0.000 

N 40 40 40 40 40 40 40 40 

CREATININE Pearson Correlation -0.583** -0.724** 1 0.520** 0.737** -0.673** 0.923** 0.525** 

Sig. (2-tailed) 0.000 0.000  0.001 0.000 .000 0.000 0.000 

N 40 40 40 40 40 40 40 40 

MDA Pearson Correlation -0.558** -0.433** 0.520** 1 0.435** -.284 0.459** 0.450** 

Sig. (2-tailed) 0.000 0.005 0.001  0.005 0.076 0.003 0.004 

N 40 40 40 40 40 40 40 40 

NO Pearson Correlation -0.604** -0.612** 0.737** 0.435** 1 -0.681** 0.727** 0.566** 

Sig. (2-tailed) 0.000 0.000 0.000 0.005  0.000 0.000 0.000 

N 40 40 40 40 40 40 40 40 

SOD Pearson Correlation 0.382* 0.693** -0.673** -0.284 -0.681** 1 -0.673** -0.637** 

Sig. (2-tailed) 0.015 0.000 0.000 0.076 0.000  0.000 0.000 

N 40 40 40 40 40 40 40 40 

UREA Pearson Correlation -0.574** -0.725** 0.923** 0.459** 0.727** -0.673** 1 0.586** 

Sig. (2-tailed) 0.000 0.000 0.000 0.003 0.000 0.000  0.000 

N 40 40 40 40 40 40 40 40 

URIC ACID Pearson Correlation -0.581** -0.771** 0.525** 0.450** 0.566** -0.637** 0.586** 1 

Sig. (2-tailed) 0.000 0.000 0.000 0.004 0.000 0.000 0.000  

N 40 40 40 40 40 40 40 40 

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 

 

There was a decrease in renal GSH after renal 

ischemia, as had been shown in other studies [32, 33, 

34]. This decrease in GSH level could be explained 

by its consumption in scavenging free radicals and 

maintaining the redox state of the cell during 

ischemic injury [33,35]. There are many evidences 

of involvement in renal ischemic injury [36, 37] and 

both tubular and vascular endothelial cells are 

involved in Reactive oxygen species (ROS) 

production [36]. Superoxide (O2
-
) radicals are among 

the most important free radicals responsible for 

ischemic injury. O2
-
 

is converted to hydrogen 

peroxide (H2O2) by SOD and resulted H2O2 is 

inactivated by glutathione peroxidase (GPX) and 

catalase [14].  Decrease in renal catalase activity 

after ischemia in present study is similar to other 

published data, which remarked decrease in catalase 

activity as well as a reduction of its gene expression 

after ischemia [32]. Increased MDA level after 

ischemia was seen which is same as seen in other 

studies in various models of kidney ischemia injury 

[34]. 

Collectively, data revealed that in the kidney, 

ischemia alone causes both oxidant stress and RNS 

formation. GSH depletion and altered 

GSH/GSSGfirst use complete name ratios can signal 

the development of oxidant-mediated tissue injury 

[12, 38] and have been observed in several models of 

oxidant-mediated acute renal failure [39,40]. GSH 

peroxidase can scavenge a number of oxidants and 

RNS such as ONOO
–
 [23, 41, 42] directly or through 

the actions of GSH. The increases in GSSG content 

and percent oxidized GSH equivalents show that 

GSH oxidation occurs during ischemia and indicates 

the development of oxidative stress prior to 

reperfusion. Lipid peroxidation is an autocatalytic 

pathway that causes oxidative damage to cell 

membranes and results in the release of reactive lipid 

aldehydes. These cytotoxic metabolites such as 4-

HNE [43, 44] diffuse from the site of production and 

react with cellular macromolecules. The appearance 

of 4-HNE-protein adducts during ischemia is 

additional evidence that oxidative stress occurs 

during ischemia. However, we cannot rule out the 

possibility that the increase in oxidant stress products 

during ischemia may be, at least in part, a result of 

accumulation due to reduced clearance. Lipid 

peroxidation is frequently used as an indicator of 

oxidative damage in the kidney [14, 45, 46] and 

provides additional support for oxidant-mediated 
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injury in rat I-R model. 4-HNE-protein adducts have 

also been detected in the kidney following treatment 

with iron [47] and during ischemia [48] using 

immunohistochemistry.  

We recently showed immunohistochemical detection 

of 3-NT-protein adducts 6 h following reperfusion 

[49], and others have shown the appearance of 

immunoreactive 3-NT containing protein 24 h 

following reperfusion [19]. In the present study, a 

highly specific and quantifiable method was used to 

detect 3-NT. These data provide the first evidence 

that the generation of ONOO
–
 precedes the 

development of renal injury and failure. ONOO
–
 is a 

potent and versatile oxidant that can react with 

cellular lipids, proteins, and DNA [50]. Nevertheless, 

3-NT-modified proteins can affect protein function 

[51-53] and should be considered as potential 

contributors to renal cell injury. In this study, 

ONOO
–
, which is a metabolite of NO increases, 

showed that reactive nitrogen species (NO) 

generated during renal ischemia contribute to the 

renal injury. 

 

Conclusion 

In conclusion, Oxidative stress is a deleterious 

process that can be an important mediator of damage 

to cell structures and consequently various disease 

states and ageing. Reactive oxygen species (ROS) 

and reactive nitrogen species (RNS) are products of 

normal cellular metabolism. ROS/RNS are known to 

act as secondary messengers controlling various 

normal physiological functions of the organism and 

therefore the production of NO• by NOS and 

superoxide by NAD(P)H is tightly regulated by 

hormones, cytokines, and other mechanisms. It was 

concluded from the outcomes of  present study that 

oxidative stress increases in renal ischemia along 

with the generation of reactive nitrogen species (NO) 

contributing to the renal injury.  
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